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Abstract

Non-centralised recommendation based decision making is a central feature of several social and

technological processes, such as market dynamics, peer-to-peer file-sharing and webs of trust of

digital certification. We propose a metric for calculating transitive trust in social networks, based

on the direct trust among agents. Our metric fully captures the individualised nature of trust

and does not rely on any specific topological characteristic of the network, contrary to similar

methods proposed in the literature. Further, we investigate the general properties of trust in

random networks according to different strategies of choice of direct trust between agents.
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1 Introduction

Systems in the form of networks are universally present. Common examples include power grids

[1], the world wide web [2] or relationships between people [3]. Other important examples are

food webs [4] and neural networks [5] in biology or the famous Seven Bridges of Königsberg

[6], known as the foundation of mathematical analysis of networks. The nodes of the network,

called vertices, may thus be computers, human beings, places or species depending on the spe-

cific application. The connections or edges can represent friendship, geographical proximity or

predator-prey relationship. This linkage can be reciprocal like connected routers [2] or directed

as signals in gene regulatory networks [7].

In particular cases, the nodes act independently but share or exchange information, resources

or other goods. If this interaction is voluntary, the concept of trust is fundamental, since it

measures howmuch a given agent can confide in the quality, reliability or authenticity of another

agent.

In cryptography, the authenticity of the binding between a public key and a user is an im-

portant condition for the security of the encryption. “Pretty Good Privacy” �PGP) [8][9] is an

encryption software using certificates, thus users can sign keys to affirm this binding, expressing

a form of trust. That leads to a network of trust connections, the “web of trust”.

In everyday life, human beings have established strategies for allocating and dealing with

trust. However, this notion of trust is extremely localised, since it is mostly formed by ex-

periences with close acquaintances. In a globally connected system, such as some of those

mentioned previously, agents have the possibility to interact with a number of other agents

which far surpasses their local neighbourhood of close acquaintances. Trust propagation in such

large systems far exceeds the limits of traditional trust comprehension. One straightforward

concept which can be used to generalise trust in this situation is transitivity, where non-local

trust relationships are inferred from direct relationships: Assume that Alice trusts Bob and Bob

trusts Carl. Applying transitivity, Alice should trust Carl to some extent. Progressing this way,

Alice may have an opinion which reaches far outside her sphere of direct interactions. How-

ever, what if Alice’s friend Eve does not trust Carl and therefore the transitivity-induced trust is

ambiguous?

In reality, trust may be composed of countless characteristics involving complicated rules and

may be heavily dependent on the context. However, in its simplest and most tractable mani-

festation, trust can be reduced to a single, non-negative real number which can be interpreted

as a probability. With this simplification, transitivity can be achieved by the multiplication of

those values and a trust metric may be defined in a straightforward manner. Without a doubt,

the concept of transitivity does not necessarily lead to unique results as it is already obvious in

Alice’s environment. Hence a trust metric has to mediate between different opinions.

In former work, this has been done in various ways [17] [20] [21], trying to establish math-

ematical concepts of trust propagation on networks. We will describe them precisely and show

why these known approaches are inappropriate to describe trust in combination with transitivity.

To ease the understanding of the measures and methods used in our work, a short introduc-

tion to graph-theoretical basics is given in the next section. Section 3 treats previous metrics,

highlighting limitations and conceptual problems. Subsequently, a stepwise development start-

ing with simple transitivity approaches leads to a sophisticated metric that combines various

alternatives to a single trust value. We illustrate usability and behaviour of this metric with the

help of simple examples. In the last section, we will demonstrate its application on random
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networks and examine an emerging non-linear behaviour with probability calculus. We resume

our results and demonstrate possibilities for future research in the conclusion.

2 Mathematics

Our approach to deal with networks is to treat them as graphs. The following concepts are thus

mainly taken from graph-theory and are fundamental for the analysis and derivations to come.

2.1 Basic definitions

A graph or network is an abstract representation of a set of vertices V where some pairs of them

are connected by a set of edges E. On a directed graph, every edge �e ∈ E points from the source

s��e) ∈ V to the target t��e) ∈ V .

In the example graph in figure 1, s��e) = c and t��e) = d. On random graphs, the topolog-

ical structure is mainly described by the size, thus the number of vertices N = |V |, and the

probability distribution of the number of neighbours.

2.2 Neighbours of a vertex and degree

�

�

�
�

�
�

�

�

�

�

Figure 1: A directed graph

For each vertex � , the neighbours N�� ) ⊂ V is the set of vertices

with a connecting edge to � . On a directed graph, we must dif-

ferentiate between in-neighbours I�� ) and out-neighbours O�� ).

Thus for every vertex j ∈ I�� ), there exists an edge �ej� from j

to � and therefore � ∈ O� j).

The degree d�� ) is the cardinality of the set of neighbours

N�� ). On a directed graph, we must distinguish between in-

degree di�� )≡ |I�� )| and out-degree do�� )≡ |O�� )|. The notion

of mean degree

d =

�
�∈V d�� )

|V |
�1)

can also be trivially expanded to mean in-degree di and mean out-degree do. In the example on

the side, I�a) = {b, c}, O�a) = {b, d} and di�a) = do�a) = 2.

As mentioned above, the degree distribution of a random graph is a measure of the connec-

tion pattern in the underlying network [10]. What is mainly used in this work is the Poisson

distribution, thus the fraction of vertices of degree d is expected to be

p�d) =
λd

d�
e−λ, �2)

with a mean degree d of λ. Such graphs are known as Erdős - Rényi graphs [11].

To describe connections of non-adjacent vertices in a network, we have to introduce the for-

malism of a path.

2.3 Path

A path P is a list of non-repeating edges [�e1, ...,�en] in which t��ek) ≡ s��ek+1) ∀ k. All traversed

vertices have to be distinct. A useful notation for source and target of a path is s�P)≡ s��e1) and

t�P)≡ t��en). The length of the path |P| is n.
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2.4 Geodesic distance g

The length of the shortest path from s to t is called shortest or geodesic distance gs�t) ∈ N�. If

no path exists between the two vertices, the distance is defined as infinity. The shortest path

and in this manner the geodesic distance can be figured out by breadth-first search BFS [15]. In

the graph in figure 1, gb�d) = 2 while gd�b) =∞.

The mean geodesic distance1 g is defined as

g =

�
i, j∈V gi� j)

|V |2
. �3)

In a very basic approach, we can assume that the number of vertices n reachable within x steps

from a given vertex is n =
�
do
�x
. For n = N , we get an approximation for the mean geodesic

distance as

g =
log�N)

log
�
do
� . �4)

3 Previous trust metrics

In this section, we look at former approaches to describe trust or related concepts on networks

and highlight their applications and limitations. The treated metrics are the link analysis algo-

rithm PageRank [17], the peer-to-peer reputation management EigenTrust [20] and the person-

alised metric TrustWebRank [21].

3.1 PageRank

PageRank [17] is a link analysis algorithm calculating the relative importance ci of each node i.

This process, invented by Larry Page et al., is used by the popular search engine “Google” to

rank websites [18]. If the existence of a link can be interpreted as providing confidence from

the source to the target, this relative importance can be used as a measure of trust. The basic

principle is that a node should have a higher value the more important its neighbours are:

ci = β
�

j∈I�i)

c j

do� j)
+ �1− β), �5)

where β ∈ [0, 1) is a damping factor. Defining a stochastic transition matrix P with

Pi j =

�
d−1
o
� j), if there exists a link between j and i,

0, otherwise,
�6)

we can write equation �5) in matrix notation, calling I the unity matrix and �I � a vector with 1

in every component,

�c =βP�c + �1− β)�I �. �7)

1 As firstly discovered by Milgram in his famous “small-world” experiments [12] [13], the mean geodesic distance

in most real networks is rather small. He realised that the mean geodesic distance in the worldwide network

of human acquaintances is close to 6.
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This equation can be solved using elementary algebra leading to a vector

�c = �I − βP)−1�1− β)�I � �8)

that contains the values ci of the vertex importance.

Note the numerous limitations of this approach: The direct trust is a stochastic matrix, mean-

ing that the total out-going trust of an agent is normalised to 1. That signifies that the measure

of trust is only relative. As this model does not allow the agent to define different trust values

for its neighbours, diversity in the amount of trust can not be expressed. The damping factor β

introduces a characteristic path length because the influence of long paths decays exponentially

with its length. There is no justification why long paths should a priori be less important. In

the original application, they assumed that an Internet user may randomly restart from a new

website with a probability given by 1−β instead of further following the links. If the network of

links contains cycles, connections will be taken into account repeatedly, thus the same opinion

can be used more than once. Finally, another strong point of criticism is that PageRank is a

global metric, thus the trust value is independent of the asker and therefore not personalised.

We must conclude that the assumptions implied by PageRank are not sufficient for trust on

social networks even though they are suitable for citations or the links of the world wide web.

In the next section, we examine the central role of trust in other domains of computer tech-

nologies. In particular, resource sharing on a network is a paradigm for the necessity of trust

between peers. In this context, a metric called Eigentrust [20] has been proposed.

3.2 EigenTrust

A peer-to-peer network is a distributed network architecture composed of participants that make

a portion of their resources such as processing power, disk storage or network bandwidth di-

rectly available to other network participants, without the need for central coordination [19].

EigenTrust [20] by Kamvar et al. introduces reputation in peer-to-peer networks in order to

increase reliability on the network. It allocates to each peer a global trust value based on its

traffic history. For each pair of peers i �= j, the direct trust value s between them is calculated

by subtracting the number of unsatisfactory transfers from the number of satisfactory transfers

si j = sati j − unsati j. �9)

The following normalisation, which assigns the same total weight to the opinion of each peer,

limits consequences of malicious peers misleading other agents by assigning wrongful direct

trust values to other peers:

ci j =
max[0, si j]
�

k max[0, sik]
. �10)

Representing the out-going values for every node as a vector, we get the notation

�ci =
�

j

ci j�ej where �ci�1 = 1. �11)

If the matrix C = [ci j] is aperiodic and irreducible2, �t�i) = �CT )n ·�ci converges for n→∞ to

the left eigenvector �t of matrix C , which is a global value independent of i. Each component t j

2 For other cases, Kamvar et al. propose different strategies. [20]
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of this global trust vector �t quantifies how much the system as a whole trusts peer j. In a prob-

abilistic interpretation, this vector �t is the stationary distribution of the Markov chain induced

by the transition matrix C .

In contrast to PageRank, the direct trust si j contains more information than a simple link, but

instead a satisfaction value. The rather arbitrary introduction of the damping factor β is avoided

here, but the problem with cycles remains. However, two important critiques persist: the lack

of personalisation and the fact that �t contains only relative values.

In the next section, we describe how TrustWebRank [21] implements a personalisation of the

concepts above.

3.3 TrustWebRank

Introducing the metric TrustWebRank [21], Walter et al. expand the concept of PageRank by

personalising it. The direct trust matrix D, where Di j reflects the direct trust from agent i to j,

will be normalised to get a stochastic matrix D̃, hence
�

j D̃i j = 1 ∀ i. They define Ti j to be the

indirect trustworthiness score from i to j, satisfying the matrix equation

T = D̃+ β D̃T, �12)

where β ∈ [0, 1) has a similar role as the damping factor in PageRank, discounting the impact

of agents far away in the network. Thus the indirect trust from agent i to j is computed as a

combination of the direct trust and the trust that the neighbours of agent i have in j. Equation

�12) can be derived using elementary algebra:

T = �I − β D̃)−1 · D̃. �13)

Note that when dealing with huge graphs, instead of directly inverting a matrix �complexity

O�N2)) as required by equation �13) and equation �8) in PageRank, an iterative method can be

used.

To avoid Ti j being out of the range [0,1], a normalisation is applied a posteriori

T̃i j =
Ti j
�

k∈O�i) Tik
. �14)

In contrast to PageRank and EigenTrust, this metric is personalised because it leads to a

matrix instead of a vector of trustworthiness. However, several limitations remain: Firstly,

TrustWebRank does not differentiate between bad opinion �low trust) and no opinion. Sec-

ondly, because of the first normalisation D → D̃, there is no difference if an agent trusts in all

his neighbours equally with a high or a low trust. Analog to PageRank, the introduction of a

characteristic path length by the factor β is not justified. Finally, the resulting trust value is

not inherently in the range [0,1]. The given normalisation simply reduces the sum of outgoing

trust of each agent to 1, providing comparability between normalised direct trust D̃i j and indi-

rect trust T̃i j. A comparison with the initial direct trust D is impossible. Therefore TrustWebRank

only provides a relative trust.
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4 A new approach to trust

Faced with the limitations of the known trust metrics, our aim is to establish a metric describing

trust on an arbitrary network. The constraint for the trust values has to be as small as possible.

To achieve this goal, the metric should work independently of topology on every directed graph3.

The resulting trust from node s to t ought to be personalised, hence be specific for s. In addition

to that, easy manipulations through malicious agents are to be avoided and numerical stability

is desired.

After presenting some general considerations, we will introduce simple attempts, which are

themselves not sufficient, but if combined, result in our final proposed trust metric.

As a pre-condition for calculating trust in a network, we allocate a direct trust value D�e to

each edge �e ∈ E, as explained in the next section.

4.1 Direct trust

The direct trust D is by definition a real-valued edge property in the range of [0, 1]. The rele-

vance of this constraint is that it guarantees boundedness and convergence on graphs. D can

be seen as a probability, thus D�e = 1 signifies absolute trust, whereas D�e = 0 is total absence of

trust. If i is the source-vertex s��e) and j the target-vertex t��e), the direct trust Di j ≡ D�e is in this

way well-defined. For every vertex � , we can define Di�� ) as the mean in-trust and Do�� ) as the

mean out-trust,

Di�� ) =

�
k∈I�� ) Dk�

di�� )
, �15)

Do�� ) =

�
k∈O�� ) D� k

do�� )
. �16)

The first step in generalising trust from direct connections is to consider the transitivity of

consecutive edges.

4.2 Trust along a path �transitivity)

For every path P, we define the trust DP along P as the product of the direct trust of the

containing edges:

DP =
�

�ei∈P

D�ei . �17)

Given two vertices s and t, we can easily find the maximum trust value Hst between s and t

with Dijkstra’s algorithm [22],

Hst = DP∗st
=max
�
DP with s�P) = s and t�P) = t

�
, �18)

where P∗
st
is called the path of highest trust. If no path exists4, we set Hst to 0. The self-trust Hss

is set to 1. It can easily be seen that all the introduced measures are in the same range [0, 1] as

the direct trust D. The seemingly arbitrary choice of this interval becomes inevitable, since it is

the only non-trivial real interval that is mapped bijectively on itself by any function f �x) = xc

for c > 0.
3 We consider graphs without self-loops and parallel edges, which are meaningless on trust networks.
4 That may be the case if the network is not fully connected.
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Figure 2: Trust along a path with x = D�x

As an example, let us calculate the trust

in the graph in figure 2 for the solid black

path Pb− = [�a,�b,�c] and the solid grey path

Pg− = [�d,�e]:

DPb−
= a · b · c = 0.36,

DPg−
= d · e = 0.35.

It can easily be seen that Pb− is the path of highest trust between s and t and therefore:

Hst = DPb−
= 0.36.

With this concept in mind, we can attempt the definition of a first trust metric.

4.3 The Lotta metric

The Lotta metric5 is based on the “trust along a path” �4.2) and defines the indirect trust Lst
between nodes s and t as the largest possible trust from s to t.

Lst = Hst �19)

The Lotta metric has the advantage of being defined and meaningful on every possible graph.

Furthermore, the indirect trust value is automatically normalised to [0, 1] and therefore com-

parable to the direct trust. However, taking simply a single path does not exploit the advantage

of the network structure. Besides, connections with low trust to t are completely neglected

resulting in a very optimistic view. This gives huge opportunities to mislead the source node s

by adding high trusted links between non-trustworthy nodes, leading to a metric which is not

robust against manipulation. Even a low direct trust Dst will not be taken into account if a

path of larger trust exists. To provide a realistic description of trust on a network, this metric is

therefore not appropriate.

We attempt now to compensate this by considering the alternative paths leading to the target.

4.4 The Rome metric

The Rome metric6 involves all possible paths Pi from s to t to determine the trust Rst . We denote

P �
i
as the path Pi without the last edge �ei, thus P

�
i
ends at an in-neighbour of t. We now define

the Rome metric using the trust DP� of the in-neighbours of t as a weight on the final trust DP:

Rst =

�
i DP�

i
· DPi
�

i DP�
i

=

�
i�DP�

i
)2D�ei
�

i DP�
i

. �20)

Hence the Rome metric, by taking into account every possible path to t, uses all the informa-

tion available in the network. However, this leads to some problems. For instance, considering

a fully connected graph with N vertices and constant trust c on all edges. In total, ∼ N � paths

5 Established in a personal conversation with Lotta Heckmann in December 2009.
6 Freely adapted from Alanus ab Insulis: “All paths lead to Rome”.
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are involved in the calculation. Apart from the numerical complexity of considering all those

paths, it can be shown that the trust decays with cN , thus tending to zero in the limit of infinite

vertices if c � 1, as follows: There are n� ·
�N−2

n

�
different paths P of length n+ 1, with DP� = cn

and DP = cn+1. According to equation �20), the trust can be calculated

Rst =

�N−2

n=0
c1+2n · n� ·
�N−2

n

�

�N−2

n=0
cn · n� ·
�N−2

n

� �21)

= cN−1
exp
�

1

c2

�
·Γ
�
N − 1, 1

c2

�

exp
�

1

c

�
·Γ
�
N − 1, 1

c

� �22)

≤ cN−1 · exp

�
1

c2
−

1

c

�

, �23)

where Γ is the lower incomplete gamma function. A visualisation of this behaviour can be seen

in figure 5.

Even on sparse networks, there is a significantly larger number of long paths than of short

ones and thus they dominate, leading to small trust values. The amount of information required

to calculate the trust is far from being optimised and many nodes may appear in several paths,

thus their opinion is involved repeatedly. Therefore the Rome metric is inappropriate for most

networks, especially for huge or highly connected ones. The field of application is narrow and

it misses the target of generality.

Since equation �20) satisfies the preliminary consideration of comparability of directed and

indirect trust, it seems to be an appropriate strategy to combine varying alternatives to a single

trust value. The limitations mentioned above were mainly caused by the tremendous number of

paths we considered. In order to reduce that number, we combine the advantages of the Rome

metric and the Lotta metric and introduce the Pervasive Trust Transitivity.

4.5 Pervasive Trust Transitivity �PTT)

This new trust metric allows calculating an indirect trust value Tst for given vertices s �= t on

a network. In order to use every available opinion concerning the target t without counting it

repeatedly, we take into account only the best path from s to each in-neighbour k ∈ I�t). That

limits the number of considered paths to the number of in-neighbours di�t)� N .

To avoid calculating trust to node t based on his own opinion, the following search is done on

a subgraph with V � = V�{t}: For every node k ∈ I�t), the path of highest trust P �
k
is determined

such that the product of the weights of its constituent edges is maximised, as explained in

4.2, leading to the values Hsk. This way for each incoming edge �ekt , the path of highest trust

Pk = P �
k
∪ �ekt passing through �ekt is found. The indirect trust is defined as the mean over all

trust values DPk
, weighted with DP�

k
. This is similar to the Rome metric, but the average is taken

only over the best path to each neighbour, thus also incorporating an aspect of the Lotta metric.

We define the Pervasive Trust Transitivity T of agent s to t as

Tst =

�
k∈I�t) DP�

k
· DPk

�
k∈I�t) DP�

k

=

�
k∈I�t)�Hsk)

2 · Dkt
�

k∈I�t)Hsk

. �24)
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Figure 3: Trust along a path with x = D�x

For the familiar example on the side, we

calculate the Pervasive Transitive Trust from

s to t: As the in-degree di�t) is 3, we have

to find the largest possible trust from s to

all the three in-neighbours of t: s, � and

x . It can easily be seen that we have to in-

volve the black solid path �Pb−), the grey

solid path �Pg−) and the black dotted path

�Pb:). The grey dotted edges are not used in

the calculation. The resulting trust Tst can

be calculated as follows

Tst =
ab · abc + d · de+ 1 · i

ab+ d + 1
≈ 0.29. �25)

The bounded values of D and therefore Hski
guarantee the perfect comparability between

direct trust D and indirect trust T without any initial normalisation necessity. The metric is

topology-independent and cycles are never taken into account. Disconnected graphs can be

treated separately or not, without changing the results. Actually even parallel edges do not

cause algorithmic problems7, only the edge with the highest trust from a set of parallel edges is

used.

Furthermore the metric is personalised, since the used paths will always depend on the source

vertex. Since there is nothing similar to the damping factors in PageRank or TrustWebRank, no

characteristic path length is introduced: If the direct trust D�ei of the edges �ei composing a path

P is equal to 1, the trust along P is 1 as well, independent of its length.

The PTT solution is exact and can be derived directly without iterative methods. The impact

of small perturbations ε in one of the values of D is not bigger than ε, so the calculation is very

robust against numerical imprecision. The complexity of the calculation of one single value Ti j
scales with O�V logV ) [22]. Surely one disadvantage is the necessity to calculate Ti j separately

for every tuple of vertices. The fastest way to perform that is to determine the trust from all the

vertices to one single target t simultaneously. For every in-neighbour k ∈ I�t), the determination

or the paths of highest trust from all � ∈ V to k can be done using Dijkstra’s algorithm [22] on

the reversed graph with complexity O�V logV ). Since this has to be done for every edge, the

complexity of calculating the indirect trust on the whole network is O�V E logV ).

In the following, we describe some simple examples which will illustrate the behaviour of the

metric on some topologies.

4.6 Simple examples with PTT

In this section, we examine three different types of networks: On a directed tree and a fully con-

nected “complete” graph with homogeneous direct trust, T will be determined exactly, whereas

in the case of an arbitrary network with homogeneous direct trust, only a general limit can be

specified.

7 Only some of the notations used to describe the metric are not valid or unique anymore.
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4.6.1 Directed tree

� � �
� � � �

Figure 4: Directed tree

In the case of a directed tree as in the illustration on the side,

it is easy to verify the implementation of transitivity. As there

is only one possible path P from a to d, the three metrics we

introduced return equivalent results, namely the product of the

weights of its constituting edges �a,�b,�c, furnishing proof that

transitivity in its simplest form is integrated in all of them. Note

that EigenTrust and TrustWebRank are not applicable on this

nearly trivial example hence node d has no out-going edge.

Surely this example does not show many of the qualities of the Pervasive Trust Transitivity.

Hence we consider the upper extreme of degree distributions, a network in which all vertices

are pairwise connected.

4.6.2 Fully connected graph with homogeneous trust

On a fully connected graph with N vertices and Di j = c ∀ i �= j, there is one direct path from s

to t and N−2 paths of length 2, one for each possible intermediate node. The resulting trust Ti j
according to our metric is independent of i and j because of symmetry. It can be calculated for

i �= j as

Ti j =
�N − 2) · c3+ c

�N − 2) · c + 1
, �26)

lim
N→∞

Ti j = c2. �27)

Figure 5 shows this dependence on N . While N increases, the importance of the direct con-

nection decays and the paths of length 2 become dominant. The dashed line corresponds to the

trust value Ri j according to the Rome metric as calculated in equation �21). It can be seen that

the PTT metric does not show the unbounded decay but a meaningful behaviour in the limit of

infinite graph size.

Even if no specific topology is given, we can nevertheless indicate limits for the PTT trust as

it can be seen in the next section.

4.6.3 Arbitrary graph with homogeneous trust

On an arbitrary network with N vertices and D�e = c ∀�e ∈ E, we can give a bound for Tst based

on the idea that the length of Pk can not be smaller than the shortest distance gs�t) and is always

smaller then the total number of vertices. Therefore, if gs�t) �∞, 8 the trust along the path Pk
is bounded DPk

≤ cgs�t) ∀ k and therefore

cN−1 ≤ Tst ≤ cgs�t). �28)

5 Pervasive Trust Transitivity on random networks

To understand the characteristics of the PTT metric, we study its behaviour on random networks

with different sizes, whereas the degree distribution is a Poissonian defined by the parameter λ.

8 If no connection exists between s and t, Tst = 0 as seen before.
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Figure 5: Trust on a fully connected network dependent on its size

The constraint for the distribution of D�e is a constant mean in-trust to avoid preferential treat-

ment for single vertices:

Di�� ) = c ∈ [0,1] ∀ � ∈ V. �29)

For the calculation of D�e, different models will be described in the following subsections.

Once the graph and the direct trust values D�e are given, we can use our metric to calculate

the indirect trust Tst for randomly chosen nodes s and t. In order to get a good statistic, we

repeat this last step for numerous pairs of nodes and rerun the algorithm until we examined lots

of graphs, always with different mean in-trusts c. 9

In order to compare between different network sizes and degree distributions, we define a

statistical measure, the trustworthiness W .

5.1 Trustworthiness W

Whereas one of the most important tasks in establishing a metric was the amount of personali-

sation, the incoming trust Tik averaged over all vertices i is nevertheless an interesting specific

quantity for each node k. We define the trustworthiness Wk of node k as

Wk =
1

N − 1

�

i∈V,i �=k

Tik. �30)

As a global network property, the mean trustworthiness is defined as

W =
1

N

�

k∈V

Wk =
1

N�N − 1)

�

i,k∈V,i �=k

Tik. �31)

5.2 Homogeneous direct trust

The easiest way of distributing D�e is to assign a constant direct trust D�e = c to all edges. We

can then determine the mean trustworthiness W for different degree distributions and network

sizes. The dependence on the mean in-trust c can be seen in figure 6.

9 All numerical calculations were performed using python with the scientific libraries SciPy, Numpy [23] and

Matplotlib [24]. For the graph-specific tasks, the free python library graph-tool [25] was used.
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Figure 6: Mean trustworthiness W on the network dependent on the mean in-trust c.

In the right plot, linear approximations for c� 1 are added using dotted line style.

Comparing the different sizes and degree distributions induced by the parameter λ, it is obvi-

ous that bigger network size leads to lower mean trustworthiness whereas a higher mean degree

causes higher mean trust. This can be explained keeping in mind that the trust T is mainly de-

pendent on the geodesic distance between the two nodes. This value increases with the network

size and decreases with higher mean degree.

As we know from 4.2, the trust along each path P is given by DP = c|P|. The trust calculated

with our metric is therefore

Tst =

�
k∈I�t) c

2gs�k) · c
�

k∈I�t) c
gs�k)

. �32)

For c small, the following approximation is valid:

lim
c→0

Tst =c
min[gs�k)]. �33)

In order to calculate the mean trustworthiness W , we have to average over Tst . If we keep only

linear terms and call p =
do
N
the probability that nodes are direct neighbours, we get:

W ≈ p · c �34)

This rough approximation can be validated fitting a function f �c) = a · c to the plots. For

N = 100 and λ = 4, we get a = 0.050, while do = 0.04 · N . For a network with λ = 8 and same

size, a = 0.974 while do = 0.08 ·N , confirming our approach. A plot of the linear approximation

can be seen in the log-log plot in figure 6. For c → 1, the direct trust on all edges and thus W

converges to 1 as visible in the graph.

In the next section, we will abandon the homogeneous direct trust. Even in the situation

where the average in-trust Di is the same for each node, namely the intrinsic value c, the indi-

vidual direct trust values can be distributed in a variety of ways. We are interested in testing the

robustness of the proposed trust metric in a situation where all agents try to selfishly increase

their own trustworthiness by favouring more centrally connected vertices. The betweenness is

a measure of this centrality.
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5.3 Betweenness centrality c�

The betweenness centrality [16] is an often used value of relative importance of a vertex � ∈ V

within a graph. We define σst�� ) as the number of shortest paths passing through � and σst the

total number of shortest paths, whereas all the path lead from s to t. The betweenness centrality

is calculated as follows

c��� ) =
�

�s,t)∈V2

s,t �=�

σst�� )

σst

∈ [0, 1]. �35)

Hence vertices that occur on many shortest paths between other vertices have a high between-

ness. We now incorporate this notion of centrality in the direct trust distribution.

5.4 Centrality based trust repartition

We allow each node to distribute the incoming trust according to his preferences, but keeping the

mean in-trust Di fixed. A particular node k may be interested in increasing his trustworthiness

Wk. Therefore, it is reasonable to get higher trust from central nodes, i.e. with high betweenness

centrality c�. Hence distributing the incoming trust Dik proportional to the centrality c��i) seems

appropriate. Additionally, this approach is robust against small modifications of the centrality

values. Since Dik has to be bounded to [0,1], we use

Dik =min
�
κk · c��i), 1
�

. �36)

Here κk ≥ 0 is chosen for each node k to guarantee the constraint of fixed Di�k) as specified in

equation �29):

�

j∈I�k)
Djk = c · di�k) ∀ k. �37)

In the improbable case of c��i) = 0 ∀ i ∈ I�k), set all Dik to c.

The whole procedure is called centrality based trust repartition.

If one single node k applies the technique above, we can compare its trustworthiness Wk

in the case of homogeneous trust distribution with W �
k
using centrality based trust repartition.

We observe an increase of its trustworthiness using the technique, since most of the measured

values in the plots of figure 7 are located above the dotted diagonal. However, as we can see in

the left plot of figure 8, the difference between W �
k
and Wk is rather small, that is the procedure

does not completely change the trustworthiness Wk of the node k, proofing the stability of our

metric against selfish behaviour of single vertices.

However, since the aim of maximising its trustworthiness Wk is identical for each node k, this

procedure is recommendable for every vertex. If the whole community uses centrality based

trust repartition, the mean trustworthiness shows an interesting behaviour visible in the right

plot of figure 8.

For small c, the application of the technique does not cause big variation because the trust

available for repartition is proportional to c and therefore small. In the limit of c → 1, the

distribution of the direct in-trust D according to equation �36) leads to a high percentage of

edges �e with full trust D�e = 1. Examining the definition of trust along a path in equation �17),

15



0.00 0.01 0.02 0.03 0.04 0.05 0.06

Wk using homogeneous trust

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

W
� k
u
si
n
g
re
p
ar
ti
ti
o
n
ed

tr
u
st c = 0.3

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Wk using homogeneous trust

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

W
� k
u
si
n
g
re
p
ar
ti
ti
o
n
ed

tr
u
st c = 0.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Wk using homogeneous trust

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
� k
u
si
n
g
re
p
ar
ti
ti
o
n
ed

tr
u
st c = 0.7

Figure 7: The black points are samples of nodes k, contrasting the trustworthiness Wk with ho-

mogeneous trust and W �
k

if k uses centrality based trust repartition.

The results were obtained on graphs with N = 100 and λ = 4 for three different mean

in-trust c. The dotted line signifies Wk =W �
k
.
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k

if k uses centrality based trust repartition. Right plot: Trustworthiness W if all

nodes use centrality based trust repartition.

we recognise that full trust along the path P leads to DP = 1. In the limit of Hi j = 1 ∀ i, j, thus

there exists a path with full trust between any pair of vertices, the trust according to the PTT

metric yields10

Tst =

�
k∈I�t) 1

2 · Dkt
�

k∈I�t) 1
=

�
k∈I�t) Dkt

di�t)
= Di�t) = c. �38)

This limit is well visible in the right graph of figure 8 as the plot approaches the diagonal. At the

limit defined in equation �38), the PTT trust Tst is independent of the geodesic distance between

the nodes s and t. We loosely denominate the emergence of this cluster of nodes connected by

path with full direct trust as ’trust percolation’11.

10 We neglect the fact that in the definition of the PTT metric, Hi j is determined on the subgraph V � = V�{t},

thus Hi j depends on t. We will face this problem in section 5.4.2.
11 As it will be seen below, even for infinite networks, the ’percolation’ transition will only be abrupt if the

average degree becomes very large. In general, it will not correspond to a second order transition and thus the

comparison with actual percolation if very tenuous.
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The achievement of ’trust percolation’ requires Hi j = 1 ∀ i, j, thus the existence of at least one

incoming edge �e with a direct trust value D�e = 1 for each node is a necessary condition. We

define Dmax�k) as the maximal incoming trust value for a given vertex k,

Dmax�k) =max
�
Dik for i in I�k)

�
. �39)

This value grows with the mean in-trust c and its expectation Dmax can be used in a very simple

model to approximate the mean trustworthiness W by

W ≈ c ·
�
Dmax

�g
, �40)

where g is the mean geodesic distance. The trust of each edge along the path from an arbitrary

vertex to each in-neighbour of t can be roughly approximated as Dmax . The mean geodesic

distance g is a characteristic length of this path and the factor c is the mean in-trust of the

target t. In the limit of graphs with infinite size, thus g →∞, the trustworthiness is

W =

�
0, if Dmax � 1,

c, if Dmax = 1.
�41)

Since Dmax is proportional to c as long as it is smaller than 1, we observe discontinuous be-

haviour of W while increasing c.

Dmax�� ) depends on the centrality distribution of the neighbours I�� ) and obviously on c. In

the following, we examine its average Dmax .

On random graphs with Poisson degree distribution, we can observe a very strong correlation

between the betweenness centrality c��� ) and the product of in- and out-degree di�� ) · do�� )

as it can be seen in figure 9. As the distribution of c� is not determinable analytically from

the degree distribution but di · do is, we use this replacement in the following mathematical

treatment.
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Figure 9: Correlation coefficient between c��� ) and di�� ) · do�� ) for different Poisson degree

distributions.
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5.4.1 Mathematical approach to ’trust percolation’

In order to understand the properties of the ’trust percolation’, we work out the distribution of

the maximal incoming trust Dmax to get its expection Dmax .

pi�d) and po�d) are the probability mass functions for the in-degree and the out-degree, al-

though they were identical in all examples used until now. The centrality measure b is defined

as di · do. Thus the probability mass function for b can be calculated as follows

pb�b) = δb,0 · pi�0) +
1−δb,0

1− po�0)

�b

do=1
po�do) · pi

�
b

do

�

. �42)

To understand the normalisation 1− po�0), you should keep in mind that the source-vertex of

an edge must not have out-degree do = 0. For a given vertex with in-degree di, the probability

mass function of the maximum bmax of the centrality values bi can be calculated:

p̃b�b, di) =

�


�

b�≤b

pb�b
�)





di

−

�


�

b��b

pb�b
�)





di

. �43)

Looking back at our definition in equation �36) together with the fixed in-trust in equation �37),

we can determine

Dmax =min

�
bmaxdic�

i bi
, 1

�

=min

�
bmaxdic

bmax + S
, 1

�

, �44)

where S is defined as
�

i bi − bmax . The probability mass function for S is the �di − 1)-fold

convolution of the modified distribution pbmax
, ensuring that bi ≤ bmax ∀ i,

pbmax
�b) =

pb�b) ·Θ�bmax − b)
�

b�≤bmax
pb�b

�)
, �45)

pS�S, di) =
�
pbmax

�b) ◦
�di−1

�S), �46)

where Θ is the discrete unit step function, leading to pbmax
�b) = 0 ∀ b > bmax . Now the expec-

tation of Dmax can be written as

Dmax =

∞�

di=1

pi�di) · Dmax�di), �47)

with

Dmax�di) = c p̃b�0, di) +

∞�

bmax=1

di ·bmax�

S=0

min

�
bmaxdic

bmax + S
, 1

�

· pS�S, di) · p̃b�bmax , di). �48)

The first summand represents the cases where b�i) = 0 for all in-neighbours. The sum is taken

over Dmax defined in equation �44), weighted with the probability mass functions of S and bmax .

The meaning of this result will be discussed in the next section.
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Figure 10: Dmax dependent on c for different Poisson degree distributions.

5.4.2 Evaluation of ’trust percolation’

The numerical evaluating of equation �47) dependent on c for different parameters λ is shown

in figure 10. In the log-log plot, the gap between Dmax and 1 is shown. The value c where

the graph disappears in the right plot �thus Dmax = 1) is thus equivalent to the saltus of the

trustworthiness in equation �41).

Examining the derivation of the expectation of Dmax , we discover that for a node � with one

single in-neighbour, Dmax�� ) is always equal to c. Therefore, the transition in equation �40) will

be discontinuous only in the limit pi�0) → 0 which is achieved only for λ � 1 in the case of

graphs with Poisson degree distribution. This explains why the trustworthiness does not reach

c in the case of λ = 4 in figure 8.

We assumed in equation �40) that the direct trust D�e of the edges along the paths used to

calculate the Pervasive Trust Transitivity in our simulations is mainly given by Dmax , since always

the best path is used. To support this assumption, we plot Dmax over c and add a density plot

of the distribution of D�e of the edges that were passed by the paths used to calculate T . The

correspondence is visualised in the left graph in figure 11, confirming this assumption.

We should keep in mind that we assumed the existence of one single incoming edge �e per

node with D
� ece to reach ’trust percolation’. But during the calculation of T , we mainly work

on a subgraph, thus some of these edges may be filtered out. This will decrease the resulting

trust T and therefore the mean trustworthiness W , especially if the mean in-degree Di is small.

To test the application of our approach on networks with finite size, we define

Wtheo = c ·
�
Dmax

�g
�49)

with the mean shortest distance taken from equation �4) as

g =
log�N)

log
�
do
� . �50)

This is a simplification assuming that the length of all the paths considered in calculating the

Pervasive Trust Transitivity is equal to the mean geodesic distance and all edges along the paths

19



have same weights Dmax . We can use the right plot in figure 11 to compare Wtheo with the

mean trustworthiness W determined in the simulations. We can see that Wtheo overestimates

W for small c. This can be explained looking at the left graph: In our simulations, the trust

along the paths used for the calculation of the PTT trust T was a little smaller than Dmax .

To calculate the trust, multiple trust values are multiplicated leading to a significantly lower

result T . Contrasting the both plots, the match between simulation and theory happens at

nearly the same value of c. The lack of accordance for lower c is caused by the assumption that

the trust along the paths is mainly determined by Dmax . This is true only in the limit Dmax → 1,

where the shorter distance of the direct paths loses its relevance.

Hence our mathematical description is an adequate approach to the ’trust percolation’, as

desired.
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Figure 11: Left plot: Density plot of used edges in the calculation of T with a plot of Dmax depen-

dent on c. Right plot: Comparison between simulation andWtheo, defined in equation

�40).

6 Conclusion

In this work, we motivated the necessity of developing a novel metric for computing indirect

trust on networks and introduced the so-called Pervasive Trust Transitivity �PTT) metric based

on the concept on transitivity. The result is a personalised metric, which makes no assumptions

about the network topology and takes into account all necessary information present in the

network. This proposed metric avoids several of the problems which exist in alternative attempts

of providing such a metric in the literature so far. In particular, it does not consider loops in the

network, and does not rely on the introduction of ad hoc damping factors.

Since the metric is defined by simple equations, we were able to investigate some of its prop-

erties analytically and studied its behaviour in simple examples. Further we investigated the

robustness of the metric against selfish attitudes of agents. Using the concept of betweenness

centrality to differentiate between more important vertices, we considered a global strategy in

which the direct trust values are proportional to the centrality of the source vertex, but the

average in-trust of the vertices is the same for all vertices. We showed that for random net-

works, the PTT metric leads to average trust values which never exceed the average in-trust

set beforehand. This means that the selfish strategy is not capable of fooling most nodes on

the network showing the robustness against manipulation of our metric. Furthermore, using
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centrality based trust repartition, a non-linear behaviour was identified, where, if the average

direct trust is high enough, a percolating network of full trust will be formed, which increases

drastically the average trust in the network.

As future work, it would be interesting to study the effect of other, more realistic degree

distributions, such as scale-free networks, and to study the role of authorities �hubs) in the

propagation of trust. More sophisticated ways of distributing the direct trust D could also be

considered, possibly omitting the strict condition that all vertices have the same in-trust. To

expand the field of application, it is possible to replace the factor Dkt in the definition of the

Pervasive Trust Transitivity in equation �24) by another value. That may be interesting if agents

want to get a trustworthy opinion about an attribute different from trust. A desirable practical

test of the quality of our metric would also be the application to real networks such as the web

of trust of “Pretty Good Privacy”.
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